1500 - 1700 A.D.

1588
Agostino Ramelli's reading wheel

Agostino Ramelli designed a "reading wheel", which allowed browsing through a large number of documents without moving from one spot to another.

The device presented a large number of books - a small library - laid open on lecterns on a kind of ferry-wheel. It allowed skipping chapters and browsing through pages by turning the wheel to bring lectern after lectern before the eyes. Ramelli's reading wheel thus linked ideas and texts and reminds of today's browsing software used to navigate the World Wide Web.

1597
The first newspaper is printed in Europe.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659704
 
Another Question of Security

Even with the best techniques it is impossible to invent a cryptographic system that is absolutely safe/unbreakable. To decipher a text means to go through many, sometimes nearly - but never really - endless attempts. For the computers of today it might take hundreds of years or even more to go through all possibilities of codes, but still, finally the code stays breakable. The much faster quantum computers will proof that one day.
Therefore the decision to elect a certain method of enciphering finally is a matter of trust.

For the average user of computers it is rather difficult to understand or even realize the dangers and/or the technological background of electronic transmission of data. For the majority thinking about one's own necessities for encryption first of all means to trust others, the specialists, to rely on the information they provide.
The websites explaining the problems behind (and also the articles and books concerning the topic) are written by experts of course as well, very often in their typical scientific language, merely understandable for laymen. The introductions and other superficial elements of those articles can be understood, whereas the real background appears as untouchable spheres of knowledge.

The fact that dangers are hard to see through and the need for security measures appears as something most people know from media reports, leads directly to the problem of an underdeveloped democracy in the field of cryptography. Obviously the connection between cryptography and democracy is rather invisible for many people. Those mentioned media reports often specialize in talking about the work computer hackers do (sometimes being presented as criminals, sometimes as heroes) and the danger to lose control over the money drawn away from one's bank account, if someone steals the credit card number or other important financial data. The term "security", surely connected to those issues, is a completely different one from the one that is connected to privacy.
It is especially the latter that touches the main elements of democracy.

for the question of security see:
http://www-db.stanford.edu/pub/gio/CS99I/security.html

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611776/100438658850
 
1900 - 2000 A.D.

1904
First broadcast talk

1918
Invention of the short-wave radio

1929
Invention of television in Germany and Russia

1941
Invention of microwave transmission

1946
Long-distance coaxial cable systems and mobile telephone services are introduced in the USA.

1957
Sputnik, the first satellite, is launched by the USSR
First data transmissions over regular phone circuits.

At the beginning of the story of today's global data networks is the story of the development of satellite communication.

In 1955 President Eisenhower announced the USA's intention to launch a satellite. But it in the end it was the Soviet Union, which launched the first satellite in 1957: Sputnik I. After Sputnik's launch it became evident that the Cold War was also a race for leadership in the application of state-of-the-art technology to defense. As the US Department of Defense encouraged the formation of high-tech companies, it laid the ground to Silicon Valley, the hot spot of the world's computer industry.

The same year as the USA launched their first satellite - Explorer I - data was transmitted over regular phone circuits for the first time, thus laying the ground for today's global data networks.

Today's satellites may record weather data, scan the planet with powerful cameras, offer global positioning and monitoring services, and relay high-speed data transmissions. Yet up to now, most satellites are designed for military purposes such as reconnaissance.

1969
ARPAnet online

ARPAnet was the small network of individual computers connected by leased lines that marked the beginning of today's global data networks. An experimental network it mainly served the purpose of testing the feasibility of wide area networks and the possibility of remote computing. It was created for resource sharing between research institutions and not for messaging services like E-mail. Although US military sponsored its research, ARPAnet was not designed for directly martial use but to support military-related research.

In 1969 ARPANET went online and linked the first two computers, one located at the University of California, Los Angeles, the other at the Stanford Research Institute.

Yet ARPAnet did not become widely accepted before it was demonstrated in action to a public of computer experts at the First International Conference on Computers and Communication in Washington, D. C. in 1972.

Before it was decommissioned in 1990, NSFnet, a network of scientific and academic computers funded by the National Science Foundation, and a separate new military network went online in 1986. In 1988 the first private Internet service providers started offering access to NSFnet to a general public. After having become the backbone of the Internet in the USA, in 1995 NSFnet was turned into a consortium of commercial backbone providers. This and the launch of the World Wide Web added to the success of the global data network we call the Net.

In the USA it was already in 1994 that commercial users outnumbered military and academic users.

Despite the rapid growth of the Net, most computers linked to it are still located in the United States.

1971
Invention of E-Mail

1979
Introduction of fiber-optic cable systems

1992
Launch of the World Wide Web

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659828
 
Late 1950s - Early 1960s: Second Generation Computers

An important change in the development of computers occurred in 1948 with the invention of the transistor. It replaced the large, unwieldy vacuum tube and as a result led to a shrinking in size of electronic machinery. The transistor was first applied to a computer in 1956. Combined with the advances in magnetic-core memory, the use of transistors resulted in computers that were smaller, faster, more reliable and more energy-efficient than their predecessors.

Stretch by IBM and LARC by Sperry-Rand (1959) were the first large-scale machines to take advantage of the transistor technology (and also used assembly language instead of the difficult machine language). Both developed for atomic energy laboratories could handle enormous amounts of data, but still were costly and too powerful for the business sector's needs. Therefore only two LARC's were ever installed.

Throughout the early 1960s there were a number of commercially successful computers (for example the IBM 1401) used in business, universities, and government and by 1965 most large firms routinely processed financial information by using computers. Decisive for the success of computers in business was the stored program concept and the development of sophisticated high-level programming languages like FORTRAN (Formular Translator), 1956, and COBOL (Common Business-Oriented Language), 1960, that gave them the flexibility to be cost effective and productive. The invention of second generation computers also marked the beginning of an entire branch, the software industry, and the birth of a wide range of new types of careers.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659439
 
Java Applets

Java applets are small programs that can be sent along with a Web page to a user. Java applets can perform interactive animations, immediate calculations, or other simple tasks without having to send a user request back to the server. They are written in Java, a platform-independent computer language, which was invented by Sun Microsystems, Inc.

Source: Whatis.com

INDEXCARD, 1/1