Databody economy and the surveillance state

Databody economy Surveillance state
Promise Reality Promise Reality
universal prosperity universal commercialisation total security total control
frictionless market pacified society political harmony death of democracy


The glamour of the data body economy clouds economic practices which are much less than glamorous. Through the seizure of the data body, practices that in the real political arena were common in the feudal age and in the early industrial age are being reconstructed. The data body economy digitally reconstructs exploitative practices such as slavery and wage labour. However, culturally the data body is still a very new phenomenon: mostly, people think if it does not hurt, it cannot be my body. Exploitation of data bodies is painless and fast. Nevertheless, this can be expected to change once the awareness of the political nature of the data body becomes more widespread. As more and more people routinely move in digitised environments, it is to be expected that more critical questions will be asked and claims to autonomy, at present restricted to some artistic and civil society groups trying to get heard amidst the deafening noise of the commercial ICT propaganda, will be articulated on a more general level.

The more problematic aspect of this development may be something else: the practices of the data body economy, themselves a reconstruction of old techniques of seizure, have begun to re-colonise real political space. Simon Davis, Director of the London-based privacy campaigners Privacy International, one of the foremost critics of modern-day technologies of surveillance and data capturing, has warned against the dangers of a loss of autonomy and undermining of civic rights that are being generated when workplaces are clogged with digital equipment allowing the constant monitoring and surveillance of workers. Unless current trends towards data capturing remain unchecked, the workplace of the future will have many features of the sinister Victorian workhouses that appear Charles Dickens novels, where any claims for autonomy were silenced with references to economic efficiency, and the required discipline imposed by a hierarchy of punishments.

The constant adaptation process required from the modern individual has anonymised and structuralized punishment, which now appears in the guise of error messages and the privatisation of risk.

TEXTBLOCK 1/5 // URL: http://world-information.org/wio/infostructure/100437611761/100438659784
 
Biometrics applications: privacy issues

All biometric technologies capture biometric data from individuals. Once these date have been captured by a system, they can, in principle, be forwarded to other locations and put to many different uses which are capable of compromising on an individuals privacy.

Technically it is easy to match biometric data with other personal data stored in government or corporate files, and to come a step closer to the counter-utopia of the transparent citizen and customer whose data body is under outside control.

While biometric technologies are often portrayed as protectors of personal data and safeguards against identity theft, they can thus contribute to an advance in "Big Brother" technology.

The combination of personalised data files with biometric data would amount to an enormous control potential. While nobody in government and industry would admit to such intentions, leading data systems companies such as EDS (Electronic Data Systems; http://www.eds.com) are also suppliers of biometric systems to the intelligence agencies of government and industry.

Biometric technologies have the function of identification. Historically, identification has been a prerequisite for the exercise of power and serves as a protection only to those who are in no conflict with this power. If the digitalisation of the body by biometric technologies becomes as widespread as its proponents hope, a new electronic feudal system could be emerging, in which people are reduced to subjects dispossessed of their to their bodies, even if these, unlike in the previous one, are data bodies. Unlike the gatekeepers of medieval towns, wear no uniforms by they might be identified; biometric technologies are pure masks.

TEXTBLOCK 2/5 // URL: http://world-information.org/wio/infostructure/100437611729/100438658826
 
The 19th Century: First Programmable Computing Devices

Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.

Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.

After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.

The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.

Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.

TEXTBLOCK 3/5 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
 
History: "Indigenous Tradition"

In preliterate societies the association of rhythmic or repetitively patterned utterances with supernatural knowledge endures well into historic times. Knowledge is passed from one generation to another. Similar as in the Southern tradition intellectual property rights are rooted in a concept of 'collective' or 'communal' intellectual property existing in perpetuity and not limited to the life of an individual creator plus some number of years after his or her death. Often rights are exercised by only one individual in each generation, often through matrilineal descent.


TEXTBLOCK 4/5 // URL: http://world-information.org/wio/infostructure/100437611725/100438659557
 
Identificaiton in history

In biometric technology, the subject is reduced to its physical and therefore inseparable properties. The subject is a subject in so far as it is objectified; that is, in so far as is identified with its own res extensa, Descartes' "extended thing". The subject exists in so far as it can be objectified, if it resists the objectification that comes with measurement, it is rejected or punished. Biometrics therefore provides the ultimate tool for control; in it, the dream of hermetic identity control seems to become a reality, a modern technological reconstruction of traditional identification techniques such as the handshake or the look into somebody's eyes.

The use of identification by states and other institutions of authority is evidently not simply a modern phenomenon. The ancient Babylonians and Chinese already made use of finger printing on clay to identify authors of documents, while the Romans already systematically compared handwritings.

Body measurement has long been used by the military. One of the first measures after entering the military is the identification and appropriation of the body measurements of a soldier. These measurements are filed and combined with other data and make up what today we would call the soldier's data body. With his data body being in possession of the authority, a soldier is no longer able freely socialise and is instead dependent on the disciplinary structure of the military institution. The soldier's social being in the world is defined by the military institution.

However, the military and civilian spheres of modern societies are no longer distinct entities. The very ambivalence of advanced technology (dual use technologies) has meant that "good" and "bad" uses of technology can no longer be clearly distinguished. The measurement of physical properties and the creation of data bodies in therefore no longer a military prerogative, it has become diffused into all areas of modern societies.

If the emancipatory potential of weak identities is to be of use, it is therefore necessary to know how biometric technologies work and what uses they are put to.

TEXTBLOCK 5/5 // URL: http://world-information.org/wio/infostructure/100437611729/100438658096
 
water-clocks

The water-clocks are an early long-distance-communication-system. Every communicating party had exactly the same jar, with a same-size-hole that was closed and the same amount of water in it. In the jar was a stick with different messages written on. When one party wanted to tell something to the other it made a fire-sign. When the other answered, both of them opened the hole at the same time. And with the help of another fire-sign closed it again at the same time, too. In the end the water covered the stick until the point of the wanted message.

INDEXCARD, 1/5
 
File Transfer Protocol (FTP)

FTP enables the transfer of files (text, image, video, sound) to and from other remote computers connected to the Internet.

INDEXCARD, 2/5
 
Optical communication system by Aeneas Tacitus, 4th century B.C.

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of message transmissions while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by torch signal that the appropriate water level has been reached. It is a disadvantage that the possible messages are restricted to a given code, but as this system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand these messages unless they possessed the codebook.

With communication separated from transportation, the distant became near.

Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

http://www.smith.edu/hsc/museum/ancient_inven...
INDEXCARD, 3/5
 
The Rocky Horror Picture Show

The story of Frank-N-furter, Brad and Janet ... Don't dream it, be it!

http://www.rockyhorrorpictureshow.com/

INDEXCARD, 4/5
 
The Internet Engineering Task Force

The Internet Engineering Task Force contributes to the evolution of the architecture, the protocols and technologies of the Net by developing new Internet standard specifications. The directors of its functional areas form the Internet Engineering Steering Group.

Internet Society: http://www.ietf.org

http://www.ietf.org/
INDEXCARD, 5/5