RTMark and Adbusters at the WTO Conference in Seattle

The 1999 WTO (World Trade Organization) Conference in Seattle not only attracted a multitude of demonstrators, but also artistic and cultural activists like RTMark and Adbusters.

Adbusters, well known as fighters against corporate disinformation, injustices in the global economy and "physical and mental pollution", timely for the WTO Conference purchased three billboards in downtown Seattle. Featuring an image with the text "System Error - Type 2000 (progress)", the billboards were meant to challenge "... the WTO's agenda of global corporate growth and expose what isn't reflected in the United State's GNP - human and environmental capital."

At the same time RTMark went on-line with its spoof WTO website http://gatt.org. Shortly after its release WTO Director-General Mike Moore accused RTMark of attempting to "undermine WTO transparency" by copying the WTO website's design and using "domain names such as `www.gatt.org` and page titles such as 'World Trade Organization / GATT Home Page' which make it difficult for visitors to realize that these are fake pages." http://gatt.org is not the first time that RTMark has used website imitation aiming at rendering an entity more transparent. RTMark has performed the same "service" for George W. Bush, Rudy Giuliani, Shell Oil, and others with the principal purpose of publicizing corporate abuses of democratic processes.

TEXTBLOCK 1/4 // URL: http://world-information.org/wio/infostructure/100437611652/100438658922
 
Legal Protection: National Legislation

Intellectual property - comprising industrial property and copyright - in general is protected by national legislation. Therefore those rights are limited territorially and can be exercised only within the jurisdiction of the country or countries under whose laws they are granted.

TEXTBLOCK 2/4 // URL: http://world-information.org/wio/infostructure/100437611725/100438659540
 
1000 B.C. - 0

900 B.C.
A postal service is used for governmental purposes in China.

500 B.C.
In ancient Greece trumpets, drums, shouting, beacon, fires, smoke signals, and mirrors are used for message transmission.

4th century B.C.
Aeneas Tacitus' optical communication system

Aeneas Tacitus, a Greek military scientist and cryptographer, invented an optical communication system that combines water and beacon telegraphy. Torches indicated the beginnings and the ends of a message transmission while water jars were used to transmit the messages. These jars had a plugged standard-size hole drilled on the bottom side and were filled with water. As those who sent and those who received the message unplugged the jars simultaneously, the water drained out. Because the transmitted messages corresponded to water levels, the sender indicated by a torch signal that the appropriate water level had been reached. The methods disadvantage was that the possible messages were restricted to a given code, but as the system was mainly used for military purposes, this was offset by the advantage that it was almost impossible for outsiders to understand the messages unless they possessed the codebook.

With communication separated from transportation, the distant became near. Tacitus' telegraph system was very fast and not excelled until the end of the 18th century.

For further information see Joanne Chang & Anna Soellner, Decoding Device, http://www.smith.edu/hsc/museum/ancient_inventions/decoder2.html

3rd century B.C.
Wax tablets are used as writing material in Mesopotamia, ancient Greece, and Etruria.

2nd century B.C.
In China paper is invented.

1st century B.C.
Codices replace scrolls

The use of codices instead of scrolls - basically the hardcover book as we know it today - is an essential event in European history. To quote accurately by page number, to browse through pages and to skip chapters - things that were impossible when reading scrolls - becomes possible.

In the computer age we are witnesses to a kind of revival of the scrolls as we scroll up and down a document. The introduction of hypertext possibly marks the beginning of a similar change as has taken place with the substitution of scrolls with codices.

TEXTBLOCK 3/4 // URL: http://world-information.org/wio/infostructure/100437611796/100438659723
 
The 19th Century: First Programmable Computing Devices

Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.

Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.

After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.

The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.

Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.

TEXTBLOCK 4/4 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
 
Robot

Robot relates to any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner. The term is derived from the Czech word robota, meaning "forced labor." Modern use of the term stems from the play R.U.R., written in 1920 by the Czech author Karel Capek, which depicts society as having become dependent on mechanical workers called robots that are capable of doing any kind of mental or physical work. Modern robot devices descend through two distinct lines of development--the early automation, essentially mechanical toys, and the successive innovations and refinements introduced in the development of industrial machinery.

INDEXCARD, 1/3
 
Galileo Galilee

Galileo Galilee (1564-1642), the Italian Mathematician and Physicist is called the father of Enlightenment. He proofed the laws of the free fall, improved the technique for the telescope and so on. Galilee is still famous for his fights against the Catholic Church. He published his writings in Italian instead of writing in Latin. Like this, everybody could understand him, which made him popular. As he did not stop talking about the world as a ball (the Heliocentric World System) instead of a disk, the Inquisition put him on trial twice and forbid him to go on working on his experiments.

INDEXCARD, 2/3
 
T. Matthew Ciolek, Global Networking: A Timeline

This document, intended as a reliable electronic reference tool, provides a timeline for three types of developments and milestones: (1) advances in long distance person-to-person communication; (2) advances in storage, replication, cataloguing, finding, and retrieval of data; and (3) standardization of concepts and tools for long distance interaction.

The advancements may have a technical (hardware), conceptual (software), or an organizational aspect, or represent an important milestone in the history of a given invention, and are annotated as such in the timeline.

The period covered ranges from 30000 BC up to now.

http://www.ciolek.com/PAPERS/milestones.html

INDEXCARD, 3/3