The 17th Century: The Invention of the First "Computers"

The devices often considered the first "computers" in our understanding were rather calculators than the sophisticated combination of hard- and software we call computers today.

In 1642 Blaise Pascal, the son of a French tax collector, developed a device to perform additions. His numerical wheel calculator was a brass rectangular box and used eight movable dials to add sums up to eight figures long. Designed to help his father with his duties, the big disadvantage of the Pascaline was its limitation to addition.

Gottfried Wilhelm von Leibniz, a German mathematician and philosopher, in 1694 improved the Pascaline by creating a machine that could also multiply. As its predecessor Leibniz's mechanical multiplier likewise worked by a system of gears and dials. Leibniz also formulated a model that may be considered the theoretical ancestor of some modern computers. In De Arte Combinatoria (1666) Leibniz argued that all reasoning, all discover, verbal or not, is reducible to an ordered combination of elements, such as numbers, words, colors, or sounds.

Further improvements in the field of early computing devices were made by Charles Xavier Thomas de Colmar, a Frenchmen. His arithometer could not only add and multiply, but perform the four basic arithmetic functions and was widely used up until the First World War.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659397
 
biotechnology summary

The fusion of flesh and machine is trend which, although inscribed in the history of modern technology from its beginnings, has reached a unprecedented momentum in recent years as a result of crucial advances in information technology, biology, and the development of global networks. Consequently, doubts are emerging concerning the viability of a distinct and definable human nature. Historical and social theories and concepts are being unhinged by the spread hybrids and by new forms of artificial life which are likely to trigger social changes escaping the grip of calculation. Attempts to defend an essential human nature against technical hybridisation, rather than strengthening the human subject, may have further blurred the question of historical subjectivity. Large amounts of money are invested into research and development of artifical biology, making some of the predictions of AI and robotics experts about radical and far reaching changes a matter of time.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611777/100438658143
 
Introduction: The Substitution of Human Faculties with Technology: Artificial Intelligence and Expert Systems

Research in artificial intelligence, starting in the 1960s, yet formulated a new goal: the automation of thought processes with intelligent machines. Although first attempts to develop "thinking" machines had only little success as the aimed at solving very general problems, the invention of expert systems marked a breakthrough. Albeit the application of those semi-intelligent systems is (still) restricted to quite narrow domains of performance, such as taxation and medical image interpretation, they are able to mimic the knowledge and reasoning capabilities of an expert in a particular discipline. While the development of intelligent machines, which are able to reason, to generalize and to learn from past experience is not likely to become reality in the very near future, research in artificial intelligence progresses quickly and sooner or later the substitution of men's unique faculties will come true.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659459
 
Integrated circuit

Also called microcircuit, the integrated circuit is an assembly of electronic components, fabricated as a single unit, in which active semiconductor devices (transistors and diodes) and passive devices (capacitors and resistors) and their interconnections are built up on a chip of material called a substrate (most commonly made of silicon). The circuit thus consists of a unitary structure with no connecting wires. The individual circuit elements are microscopic in size.

INDEXCARD, 1/3
 
Automation

Automation is concerned with the application of machines to tasks once performed by humans or, increasingly, to tasks that would otherwise be impossible. Although the term mechanization is often used to refer to the simple replacement of human labor by machines, automation generally implies the integration of machines into a self-governing system. Automation has revolutionized those areas in which it has been introduced, and there is scarcely an aspect of modern life that has been unaffected by it. Nearly all industrial installations of automation, and in particular robotics, involve a replacement of human labor by an automated system. Therefore, one of the direct effects of automation in factory operations is the dislocation of human labor from the workplace. The long-term effects of automation on employment and unemployment rates are debatable. Most studies in this area have been controversial and inconclusive. As of the early 1990s, there were fewer than 100,000 robots installed in American factories, compared with a total work force of more than 100 million persons, about 20 million of whom work in factories.

INDEXCARD, 2/3
 
Network Information Center (NIC)

Network information centers are organizations responsible for registering and maintaining the domain names on the World Wide Web. Until competition in domain name registration was introduced, they were the only ones responsible. Most countries have their own network information center.

INDEXCARD, 3/3