1940s - Early 1950s: First Generation Computers
Probably the most important contributor concerning the theoretical basis for the digital computers that were developed in the 1940s was Alan Turing, an English mathematician and logician. In 1936 he created the Turing machine, which was originally conceived as a mathematical tool that could infallibly recognize undecidable propositions. Although he instead proved that there cannot exist any universal method of determination, Turing's machine represented an idealized mathematical model that reduced the logical structure of any computing device to its essentials. His basic scheme of an input/output device, memory, and central processing unit became the basis for all subsequent digital computers.
The onset of the Second World War led to an increased funding for computer projects, which hastened technical progress, as governments sought to develop computers to exploit their potential strategic importance.
By 1941 the German engineer Konrad Zuse had developed a computer, the Z3, to design airplanes and missiles. Two years later the British completed a secret code-breaking computer called Colossus to decode German messages and by 1944 the Harvard engineer Howard H. Aiken had produced an all-electronic calculator, whose purpose was to create ballistic charts for the U.S. Navy.
Also spurred by the war the Electronic Numerical Integrator and Computer (ENIAC), a general-purpose computer, was produced by a partnership between the U.S. government and the University of Pennsylvania (1943). Consisting of 18.000 vacuum tubes, 70.000 resistors and 5 million soldered joints, the computer was such a massive piece of machinery (floor space: 1,000 square feet) that it consumed 160 kilowatts of electrical power, enough energy to dim lights in an entire section of a bigger town.
Concepts in computer design that remained central to computer engineering for the next 40 years were developed by the Hungarian-American mathematician John von Neumann in the mid-1940s. By 1945 he created the Electronic Discrete Variable Automatic Computer (EDVAC) with a memory to hold both a stored program as well as data. The key element of the Neumann architecture was the central processing unit (CPU), which allowed all computer functions to be coordinated through a single source. One of the first commercially available computers to take advantage of the development of the CPU was the UNIVAC I (1951). Both the U.S. Census bureau and General Electric owned UNIVACs (Universal Automatic Computer).
Characteristic for first generation computers was the fact, that instructions were made-to-order for the specific task for which the computer was to be used. Each computer had a different binary-coded program called a machine language that told it how to operate. Therefore computers were difficult to program and limited in versatility and speed. Another feature of early computers was that they used vacuum tubes and magnetic drums for storage.
|
TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659338
|
|
The 18th Century: Powered Machines and the Industrial Revolution
The invention of the steam engine by James Watt in 1776 represented a major advance in the development of powered machines. It was first applied to an industrial operation - the spinning of cotton - in 1785. A new kind of work-slave it not only marked the beginning of the Industrial Revolution, but also the coming age of mass production.
In the England of the 18th century five important inventions in the textile industry advanced the automation of work processes. 1) John Kay's flying shuttle in 1733 , which permitted the weaving of larger widths of cloth and significantly increased weaving speed, 2) Edmund Cartwright's power loom in 1785, which increased weaving speed still further, 3) James Hargreaves' spinning jenny in 1764, 4) Richard Arkwright's water frame and 5) Samuel Crompton's spinning mule in 1779, whereby the last three inventions improved the speed and quality of thread-spinning operations. Those developments, combined with the invention of the steam engine, in short time led to the creation of new machine-slaves and the mechanization of the production of most major goods, such as iron, paper, leather, glass and bricks.
Large-scale machine production was soon applied in many manufacturing sectors and resulted in a reduction of production costs. Yet the widespread use of the novel work-slaves also led to new demands concerning the work force's qualifications. The utilization of machines enabled a differentiated kind of division of labor and eventuated in a (further) specialization of skills. While before many goods were produced by skilled craftsmen the use of modern machinery increased the demand for semiskilled and unskilled workers. Also, the nature of the work process altered from one mainly dependent on physical power to one primarily dominated by technology and an increasing proportion of the labor force employed to operate machines.
|
TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659368
|
|
Automation
Automation is concerned with the application of machines to tasks once performed by humans or, increasingly, to tasks that would otherwise be impossible. Although the term mechanization is often used to refer to the simple replacement of human labor by machines, automation generally implies the integration of machines into a self-governing system. Automation has revolutionized those areas in which it has been introduced, and there is scarcely an aspect of modern life that has been unaffected by it. Nearly all industrial installations of automation, and in particular robotics, involve a replacement of human labor by an automated system. Therefore, one of the direct effects of automation in factory operations is the dislocation of human labor from the workplace. The long-term effects of automation on employment and unemployment rates are debatable. Most studies in this area have been controversial and inconclusive. As of the early 1990s, there were fewer than 100,000 robots installed in American factories, compared with a total work force of more than 100 million persons, about 20 million of whom work in factories.
|
INDEXCARD, 1/3
|
|
Moral rights
Authors of copyrighted works (besides economic rights) enjoy moral rights on the basis of which they have the right to claim their authorship and require that their names be indicated on the copies of the work and in connection with other uses thereof. Moral rights are generally inalienable and remain with the creator even after he has transferred his economic rights, although the author may waive their exercise.
|
INDEXCARD, 2/3
|
|
Henry Ford
b. July 30, 1863, Wayne County, Michigan, U.S. d. April 7, 1947, Dearborn, Michigan, U.S.
American industrialist who revolutionized factory production with his assembly-line methods. Celebrated as both a technological genius and a folk hero, Ford was the creative force behind an industry of unprecedented size and wealth that in only a few decades permanently changed the economic and social character of the United States. Once Ford realized the tremendous part he and his Model T automobile had played in bringing about this change, he wanted nothing more than to reverse it, or at least to recapture the rural values of his boyhood. Henry Ford, then, is an apt symbol of the transition from an agricultural to an industrial America.
|
INDEXCARD, 3/3
|
|