The 19th Century: First Programmable Computing Devices
Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.
Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.
After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.
The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.
Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.
|
TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
|
|
History: "The South"
In many traditional Southern countries awe and mystery surround the created object into which the creator projects spirit and soul. Also in contrast with the Western individual-based concept of intellectual property rights it is custom to recognize 'collective', 'communal' or 'folkloric' copyright. Folkloric copyright acknowledges rights to all kinds of knowledge, ideas and innovations produced in 'intellectual commons'. Such rights are not limited to the lifetime of an individual but rather exist in perpetuity with a specific group or an entire people.
Islamic Tradition
Already early Islamic jurists recognized a creator's right or copyright and offered protection against piracy. Traditional Islamic law treats infringement as a breach of ethics, not as a criminal act of theft. Punishment is carried out in the form of defamation of the infringer and the casting of shame on his tribe. Only in recent years many Islamic countries have adopted formal copyright statutes.
|
TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611725/100438659436
|
|
The 18th Century: Powered Machines and the Industrial Revolution
The invention of the steam engine by James Watt in 1776 represented a major advance in the development of powered machines. It was first applied to an industrial operation - the spinning of cotton - in 1785. A new kind of work-slave it not only marked the beginning of the Industrial Revolution, but also the coming age of mass production.
In the England of the 18th century five important inventions in the textile industry advanced the automation of work processes. 1) John Kay's flying shuttle in 1733 , which permitted the weaving of larger widths of cloth and significantly increased weaving speed, 2) Edmund Cartwright's power loom in 1785, which increased weaving speed still further, 3) James Hargreaves' spinning jenny in 1764, 4) Richard Arkwright's water frame and 5) Samuel Crompton's spinning mule in 1779, whereby the last three inventions improved the speed and quality of thread-spinning operations. Those developments, combined with the invention of the steam engine, in short time led to the creation of new machine-slaves and the mechanization of the production of most major goods, such as iron, paper, leather, glass and bricks.
Large-scale machine production was soon applied in many manufacturing sectors and resulted in a reduction of production costs. Yet the widespread use of the novel work-slaves also led to new demands concerning the work force's qualifications. The utilization of machines enabled a differentiated kind of division of labor and eventuated in a (further) specialization of skills. While before many goods were produced by skilled craftsmen the use of modern machinery increased the demand for semiskilled and unskilled workers. Also, the nature of the work process altered from one mainly dependent on physical power to one primarily dominated by technology and an increasing proportion of the labor force employed to operate machines.
|
TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659368
|
|
Charles Babbage
b. December 26, 1791, London, England d. October 18, 1871, London, England
English mathematician and inventor who is credited with having conceived the first automatic digital computer. The idea of mechanically calculating mathematical tables first came to Babbage in 1812 or 1813. Later he made a small calculator that could perform certain mathematical computations to eight decimals. During the mid-1830s Babbage developed plans for the so-called analytical engine, the forerunner of the modern digital computer. In this device he envisioned the capability of performing any arithmetical operation on the basis of instructions from punched cards, a memory unit in which to store numbers, sequential control, and most of the other basic elements of the present-day computer.
|
INDEXCARD, 1/1
|
|