1940s - 1950s: The Development of Early Robotics Technology

During the 1940s and 1950s two major developments enabled the design of modern robots. Robotics generally is based on two related technologies: numerical control and teleoperators.

Numerical control was invented during the late 1940s and early 1950s. It is a method of controlling machine tool axes by means of numbers that have been coded on media. The first numerical control machine was presented in 1952 at the Massachusetts Institute of Technology (MIT), whose subsequent research led to the development of APT (Automatically Programmed Tools). APT, a language for programming machine tools, was designed for use in computer-assisted manufacturing (CAM).

First teleoperators were developed in the early 1940s. Teleoperators are mechanical manipulators which are controlled by a human from a remote location. In its typical application a human moves a mechanical arm and hand with its moves being duplicated at another location.

TEXTBLOCK 1/2 // URL: http://world-information.org/wio/infostructure/100437611663/100438659348
 
Economic structure; digital euphoria

The dream of a conflict-free capitalism appeals to a diverse audience. No politician can win elections without eulogising the benefits of the information society and promising universal wealth through informatisation. "Europe must not lose track and should be able to make the step into the new knowledge and information society in the 21st century", said Tony Blair.

The US government has declared the construction of a fast information infrastructure network the centerpiece of its economic policies

In Lisbon the EU heads of state agreed to accelerate the informatisation of the European economies

The German Chancellor Schröder has requested the industry to create 20,000 new informatics jobs.

The World Bank understands information as the principal tool for third world development

Electronic classrooms and on-line learning schemes are seen as the ultimate advance in education by politicians and industry leaders alike.

But in the informatised economies, traditional exploitative practices are obscured by the glamour of new technologies. And the nearly universal acceptance of the ICT message has prepared the ground for a revival of 19th century "adapt-or-perish" ideology.

"There is nothing more relentlessly ideological than the apparently anti-ideological rhetoric of information technology"

(Arthur and Marilouise Kroker, media theorists)

TEXTBLOCK 2/2 // URL: http://world-information.org/wio/infostructure/100437611726/100438658999
 
1996 WIPO Copyright Treaty (WCT)

The 1996 WIPO Copyright Treaty, which focused on taking steps to protect copyright "in the digital age" among other provisions 1) makes clear that computer programs are protected as literary works, 2) the contracting parties must protect databases that constitute intellectual creations, 3) affords authors with the new right of making their works "available to the public", 4) gives authors the exclusive right to authorize "any communication to the public of their works, by wire or wireless means ... in such a way that members of the public may access these works from a place and at a time individually chosen by them." and 5) requires the contracting states to protect anti-copying technology and copyright management information that is embedded in any work covered by the treaty. The WCT is available on: http://www.wipo.int/documents/en/diplconf/distrib/94dc.htm



http://www.wipo.int/documents/en/diplconf/dis...
INDEXCARD, 1/3
 
Neighboring rights

Copyright laws generally provide for three kinds of neighboring rights: 1) the rights of performing artists in their performances, 2) the rights of producers of phonograms in their phonograms, and 3) the rights of broadcasting organizations in their radio and television programs. Neighboring rights attempt to protect those who assist intellectual creators to communicate their message and to disseminate their works to the public at large.

INDEXCARD, 2/3
 
John Dee

b. July 13, 1527, London, England
d. December 1608, Mortlake, Surrey

English alchemist, astrologer, and mathematician who contributed greatly to the revival of interest in mathematics in England. After lecturing and studying on the European continent between 1547 and 1550, Dee returned to England in 1551 and was granted a pension by the government. He became astrologer to the queen, Mary Tudor, and shortly thereafter was imprisoned for being a magician but was released in 1555. Dee later toured Poland and Bohemia (1583-89), giving exhibitions of magic at the courts of various princes. He became warden of Manchester College in 1595.

INDEXCARD, 3/3