The 19th Century: First Programmable Computing Devices

Until the 19th century "early computers", probably better described as calculating machines, were basically mechanical devices and operated by hand. Early calculators like the abacus worked with a system of sliding beads arranged on a rack and the centerpiece of Leibniz's multiplier was a stepped-drum gear design.

Therefore Charles Babbage's proposal of the Difference Engine (1822), which would have (it was never completed) a stored program and should perform calculations and print the results automatically, was a major breakthrough, as it for the first time suggested the automation of computers. The construction of the Difference Engine, which should perform differential equations, was inspired by Babbage's idea to apply the ability of machines to the needs of mathematics. Machines, he noted, were best at performing tasks repeatedly without mistakes, while mathematics often required the simple repetition of steps.

After working on the Difference Engine for ten years Babbage was inspired to build another machine, which he called Analytical Engine. Its invention was a major step towards the design of modern computers, as it was conceived the first general-purpose computer. Instrumental to the machine's design was his assistant, Augusta Ada King, Countess of Lovelace, the first female computer programmer.

The second major breakthrough in the design of computing machines in the 19th century may be attributed to the American inventor Herman Hollerith. He was concerned with finding a faster way to compute the U.S. census, which in 1880 had taken nearly seven years. Therefore Hollerith invented a method, which used cards to store data information which he fed into a machine that compiled the results automatically. The punch cards not only served as a storage method and helped reduce computational errors, but furthermore significantly increased speed.

Of extraordinary importance for the evolution of digital computers and artificial intelligence have furthermore been the contributions of the English mathematician and logician George Boole. In his postulates concerning the Laws of Thought (1854) he started to theorize about the true/false nature of binary numbers. His principles make up what today is known as Boolean algebra, the collection of logic concerning AND, OR, NOT operands, on which computer switching theory and procedures are grounded. Boole also assumed that the human mind works according to these laws, it performs logical operations that could be reasoned. Ninety years later Boole's principles were applied to circuits, the blueprint for electronic computers, by Claude Shannon.

TEXTBLOCK 1/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659426
 
The 17th Century: The Invention of the First "Computers"

The devices often considered the first "computers" in our understanding were rather calculators than the sophisticated combination of hard- and software we call computers today.

In 1642 Blaise Pascal, the son of a French tax collector, developed a device to perform additions. His numerical wheel calculator was a brass rectangular box and used eight movable dials to add sums up to eight figures long. Designed to help his father with his duties, the big disadvantage of the Pascaline was its limitation to addition.

Gottfried Wilhelm von Leibniz, a German mathematician and philosopher, in 1694 improved the Pascaline by creating a machine that could also multiply. As its predecessor Leibniz's mechanical multiplier likewise worked by a system of gears and dials. Leibniz also formulated a model that may be considered the theoretical ancestor of some modern computers. In De Arte Combinatoria (1666) Leibniz argued that all reasoning, all discover, verbal or not, is reducible to an ordered combination of elements, such as numbers, words, colors, or sounds.

Further improvements in the field of early computing devices were made by Charles Xavier Thomas de Colmar, a Frenchmen. His arithometer could not only add and multiply, but perform the four basic arithmetic functions and was widely used up until the First World War.

TEXTBLOCK 2/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659397
 
1913: Henry Ford and the Assembly Line

Realizing that he'd need to lower costs Henry Ford (Ford Motor Company) was inspired to create a more efficient way to produce his cars. Looking at other industries he and his team found four principles, which furthered their goal: interchangeable parts, continuous flow, division of labor, and reducing wasted effort.

The use of interchangeable parts meant making the individual pieces of the car the same every time. Therefore the machines had to be improved, but once they were adjusted, they could be operated by a low-skilled laborer. To reduce the time workers spent moving around Ford refined the flow of work in the manner that as one task was finished another began, with minimum time spent in set-up. Furthermore he divided the labor by breaking the assembly of the legendary Model T in 84 distinct steps. Frederick Taylor, the creator of "scientific management" was consulted to do time and motion studies to determine the exact speed at which the work should proceed and the exact motions workers should use to accomplish their tasks.

Putting all those findings together in 1913 Ford installed the first moving assembly line that was ever used for large-scale manufacturing. His cars could then be produced at a record-breaking rate, which meant that he could lower the price, but still make a good profit by selling more cars. For the first time work processes were largely automated by machinery.

TEXTBLOCK 3/3 // URL: http://world-information.org/wio/infostructure/100437611663/100438659335
 
Expert system

Expert systems are advanced computer programs that mimic the knowledge and reasoning capabilities of an expert in a particular discipline. Their creators strive to clone the expertise of one or several human specialists to develop a tool that can be used by the layman to solve difficult or ambiguous problems. Expert systems differ from conventional computer programs as they combine facts with rules that state relations between the facts to achieve a crude form of reasoning analogous to artificial intelligence. The three main elements of expert systems are: (1) an interface which allows interaction between the system and the user, (2) a database (also called the knowledge base) which consists of axioms and rules, and (3) the inference engine, a computer program that executes the inference-making process. The disadvantage of rule-based expert systems is that they cannot handle unanticipated events, as every condition that may be encountered must be described by a rule. They also remain limited to narrow problem domains such as troubleshooting malfunctioning equipment or medical image interpretation, but still have the advantage of being much lower in costs compared with paying an expert or a team of specialists.

INDEXCARD, 1/3
 
Blaise Pascal

b. June 19, 1623, Clermont-Ferrand, France
d. August 19, 1662, Paris, France

French mathematician, physicist, religious philosopher, and master of prose. He laid the foundation for the modern theory of probabilities, formulated what came to be known as Pascal's law of pressure, and propagated a religious doctrine that taught the experience of God through the heart rather than through reason. The establishment of his principle of intuitionism had an impact on such later philosophers as Jean-Jacques Rousseau and Henri Bergson and also on the Existentialists.

INDEXCARD, 2/3
 
General Electric

GE is a major American corporation and one of the largest and most diversified corporations in the world. Its products include electrical and electronic equipment, plastics, aircraft engines, medical imaging equipment, and financial services. The company was incorporated in 1892, and in 1986 GE purchased the RCA Corporation including the RCA-owned television network, the National Broadcasting Company, Inc. In 1987, however, GE sold RCA's consumer electronics division to Thomson SA, a state-owned French firm, and purchased Thomson's medical technology division. In 1989 GE agreed to combine its European business interests in appliances, medical systems, electrical distribution, and power systems with the unrelated British corporation General Electric Company. Headquarters are in Fairfield, Conn., U.S.

INDEXCARD, 3/3