Biometrics applications: physical access

This is the largest area of application of biometric technologies, and the most direct lineage to the feudal gate keeping system. Initially mainly used in military and other "high security" territories, physical access control by biometric technology is spreading into a much wider field of application. Biometric access control technologies are already being used in schools, supermarkets, hospitals and commercial centres, where the are used to manage the flow of personnel.

Biometric technologies are also used to control access to political territory, as in immigration (airports, Mexico-USA border crossing). In this case, they can be coupled with camera surveillance systems and artificial intelligence in order to identify potential suspects at unmanned border crossings. Examples of such uses in remote video inspection systems can be found at http://www.eds-ms.com/acsd/RVIS.htm

A gate keeping system for airports relying on digital fingerprint and hand geometry is described at http://www.eds-ms.com/acsd/INSPASS.htm. This is another technology which allows separating "low risk" travellers from "other" travellers.

An electronic reconstruction of feudal gate keeping capable of singling out high-risk travellers from the rest is already applied at various border crossing points in the USA. "All enrolees are compared against national lookout databases on a daily basis to ensure that individuals remain low risk". As a side benefit, the economy of time generated by the inspection system has meant that "drug seizures ... have increased since Inspectors are able to spend more time evaluating higher risk vehicles".

However, biometric access control can not only prevent people from gaining access on to a territory or building, they can also prevent them from getting out of buildings, as in the case of prisons.

TEXTBLOCK 1/6 // URL: http://world-information.org/wio/infostructure/100437611729/100438658838
 
Biometric applications: surveillance

Biometric technologies are not surveillance technologies in themselves, but as identification technologies they provide an input into surveillance which can make such as face recognition are combined with camera systems and criminal data banks in order to supervise public places and single out individuals.

Another example is the use of biometrics technologies is in the supervision of probationers, who in this way can carry their special hybrid status between imprisonment and freedom with them, so that they can be tracked down easily.

Unlike biometric applications in access control, where one is aware of the biometric data extraction process, what makes biometrics used in surveillance a particularly critical issue is the fact that biometric samples are extracted routinely, unnoticed by the individuals concerned.

TEXTBLOCK 2/6 // URL: http://world-information.org/wio/infostructure/100437611729/100438658740
 
Timeline 1600 - 1900 AD

17th century Cardinal Richelieu invents an encryption-tool called grille, a card with holes for writing messages on paper into the holes of those cards. Afterwards he removes the cards and fills in the blanks, so the message looks like an ordinary letter. The recipient needs to own the same card

- Bishop John Wilkins invents a cryptologic system looking like music notes. In a book he describes several forms of steganographic systems like secrets inks, but also the string cipher. He mentions the so-called Pig Latin, a spoken way of encryption that was already used by the ancient Indians

- the English scientist, magician and astrologer John Dee works on the ancient Enochian alphabet; he also possesses an encrypted writing that could not been broken until today

1605/1623 Sir Francis Bacon (= Francis Tudor = William Shakespeare?) writes several works containing ideas about cryptography. One of his most important advises is to use ciphers in such a way that no-one gets suspicious that the text could be enciphered. For this the steganogram was the best method, very often used in poems. The attempt to decipher Shakespeare's sonnets (in the 20th century) lead to the idea that his works had been written by Francis Bacon originally.

1671 Leibniz invents a calculating machine that uses the binary scale which we still use today, more advanced of course, called the ASCII code

18th century this is the time of the Black Chambers of espionage in Europe, Vienna having one of the most effective ones, called the "Geheime Kabinettskanzlei", headed by Baron Ignaz von Koch. Its task is to read through international diplomatic mail, copy letters and return them to the post-office the same morning. Supposedly about 100 letters are dealt with each day.

1790's Thomas Jefferson and Robert Patterson invent a wheel cipher

1799 the Rosetta Stone is found and makes it possible to decipher the Egyptian Hieroglyphs

1832 or 1838 Sam Morse develops the Morse Code, which actually is no code but an enciphered alphabet of short and long sounds. The first Morse code-message is sent by telegraph in 1844.

1834 the Braille Code for blind people is developed in today's form by Louis Braille

1844 the invention of the telegraph changes cryptography very much, as codes are absolutely necessary by then

1854 the Playfair cipher is invented by Sir Charles Wheatstone

1859 for the first time a tomographic cipher gets described

1861 Friedrich W. Kasiski does a cryptoanalysis of the Vigenère ciphers, which had been supposed to be uncrackable for ages

1891 Major Etienne Bazeries creates a new version of the wheel cipher, which is rejected by the French Army

1895 the invention of the radio changes cryptography-tasks again and makes them even more important

TEXTBLOCK 3/6 // URL: http://world-information.org/wio/infostructure/100437611776/100438658974
 
The "Corpse-Conversion Factory"-rumor

Supposedly the most famous British atrocity story concerning the Germans during World War I was the "Corpse-Conversion Factory"-rumor; it was said the Germans produced soap out of corpses. A story, which got so well believed that it was repeated for years - without a clear evidence of reality at that time. (Taylor, Munitions of the Mind, p.180)

TEXTBLOCK 4/6 // URL: http://world-information.org/wio/infostructure/100437611661/100438658427
 
Who owns the Internet and who is in charge?

The Internet/Matrix still depends heavily on public infrastructure and there is no dedicated owner of the whole Internet/Matrix, but the networks it consists of are run and owned by corporations and institutions. Access to the Internet is usually provided by Internet Service Providers (ISPs) for a monthly fee. Each network is owned by someone and has a network operation center from where it is centrally controlled, but the Internet/Matrix is not owned by any single authority and has no network operation center of its own. No legal authority determines how and where networks can be connected together, this is something the managers of networks have to agree about. So there is no way to ever gain ultimate control of the Matrix/Internet.
The in some respects decentralized Matrix/Internet architecture and administration do not imply that there are no authorities for oversight and common standards for sustaining basic operations, for administration: There are authorities for IP number and domain name registrations, e.g.
Ever since the organizational structures for Internet administration have changed according to the needs to be addressed. Up to now, administration of the Internet is a collaborative undertaking of several loose cooperative bodies with no strict hierarchy of authority. These bodies make decisions on common guidelines, as communication protocols, e.g., cooperatively, so that compatibility of software is guaranteed. But they have no binding legal authority, nor can they enforce the standards they have agreed upon, nor are they wholly representative for the community of Internet users. The Internet has no official governing body or organization; most parts are still administered by volunteers.
Amazingly, there seems to be an unspoken and uncodified consent of what is allowed and what is forbidden on the Internet that is widely accepted. Codifications, as the so-called Netiquette, are due to individual efforts and mostly just expressively stating the prevailing consent. Violations of accepted standards are fiercely rejected, as reactions to misbehavior in mailing lists and newsgroups prove daily.
Sometimes violations not already subject to law become part of governmental regulations, as it was the case with spamming, the unsolicited sending of advertising mail messages. But engineers proved to be quicker and developed software against spamming. So, in some respects, the Internet is self-regulating, indeed.
For a detailed report on Internet governance, click here.

TEXTBLOCK 5/6 // URL: http://world-information.org/wio/infostructure/100437611791/100438658447
 
Further Tools: Photography

Art has always contributed a lot to disinformation.
Many modern tools for disinformation are used in art/photography.
Harold D. Lasswell once stated that propaganda was cheaper than violence. Today this is no longer true. Technology has created new tools for propaganda and disinformation - and they are expensive. But by now our possibilities to manipulate pictures and stories have gone so far that it can get difficult to tell the difference between the original and a manipulation.

Trillions of photographs have been taken in the 20th century. Too many to look at, too many to control them and their use. A paradise for manipulation.
We have to keep in mind: There is the world, and there exist pictures of the world, which does not mean that both are the same thing. Photographs are not objective, because the photographer selects the part of the world which is becoming a picture. The rest is left out.

Some tools for manipulation of photography are:



Some of those are digital ways of manipulation, which helps to change pictures in many ways without showing the manipulation.

Pictures taken from the internet could be anything and come from anywhere. To proof the source is nearly impossible. Therefore scientists created on watermarks for pictures, which make it impossible to "steal" or manipulate a picture out of the net.

TEXTBLOCK 6/6 // URL: http://world-information.org/wio/infostructure/100437611661/100438658730
 
Cutting

The cutting of pictures in movies or photographs is highly manipulative: it is easy to produce a new video out of an already existing one. The result is a form of manipulation that is difficult to contradict. A reputation destroyed by this, is nearly impossible to heal.

INDEXCARD, 1/7
 
Central processing unit

A CPU is the principal part of any digital computer system, generally composed of the main memory, control unit, and arithmetic-logic unit. It constitutes the physical heart of the entire computer system; to it is linked various peripheral equipment, including input/output devices and auxiliary storage units...

INDEXCARD, 2/7
 
Gottfried Wilhelm von Leibniz

b. July 1, 1646, Leipzig
d. November 14, 1716, Hannover, Hanover

German philosopher, mathematician, and political adviser, important both as a metaphysician and as a logician and distinguished also for his independent invention of the differential and integral calculus. 1661, he entered the University of Leipzig as a law student; there he came into contact with the thought of men who had revolutionized science and philosophy--men such as Galileo, Francis Bacon, Thomas Hobbes, and René Descartes. In 1666 he wrote De Arte Combinatoria ("On the Art of Combination"), in which he formulated a model that is the theoretical ancestor of some modern computers.

INDEXCARD, 3/7
 
First Amendment Handbook

The First Amendment to the US Constitution, though short, lists a number of rights. Only a handful of words refer to freedoms of speech and the press, but those words are of incalculable significance. To understand the current subtleties and controversies surrounding this right, check out this First Amendment site. This detailed handbook of legal information, mostly intended for journalists, should be of interest to anyone who reads or writes. For example, the chapter Invasion of Privacy shows the limits of First Amendment rights, and the balance between the rights of the individual and the rights of the public - or, more crudely, the balance of Tabloid vs. Celebrity. Each section is carefully emended with relevant legal decisions.

http://www.rcfp.org/handbook/viewpage.cgi

INDEXCARD, 4/7
 
The Spot

http://www.thespot.com/

http://www.thespot.com/
INDEXCARD, 5/7
 
Total copyright industries

The total copyright industries encompass the "core copyright industries" and portions of many other industries that either create, distribute, or depend upon copyrighted works. Examples include retail trade (a portion of which is sales of video, audio, software, and books, for example), the doll and toy industry, and computer manufacturing.


INDEXCARD, 6/7
 
Center for Democracy and Technology

The Center for Democracy and Technology works to promote democratic values and constitutional liberties in the digital age. With expertise in law, technology, and policy, the Center seeks practical solutions to enhance free expression and privacy in global communications technologies. The Center is dedicated to building consensus among all parties interested in the future of the Internet and other new communications media.

http://www.cdt.org

INDEXCARD, 7/7